ジルコンのART年代測定に向けた取り組み:Am線源を利用したART形成実験

中島大輝*・長谷部徳子*・横山明彦*・山田記大*・飯沼勇人**・高宮幸一**

Efforts toward ART dating in zircon: ART formation experiments using Am sources

Taiki Nakashima*, Noriko Hasebe*, Akihiko Yokoyama*, Norihiro Yamada* , Yuto linuma** and Koichi Takamiya**

* 金沢大学, Kanazawa University

** 京都大学, Kyoto University

はじめに

アルファリコイルトラック (ART) は²³⁸U, ²³⁵U, ²³²Thおよびその娘核種がアルファ壊変 をする際に生じたエネルギーにより、残った原 子核が動いてできる損傷のことである。 ウラン やトリウムの壊変定数は決まっているため、鉱 物内のART数とウラン・トリウム濃度を測定す ることで年代を算出することができる.しか し、年代既知のジルコンにART年代測定法を適 用したところ、期待される年代よりも若く算出 された (早坂ほか, 2018). その原因として, ART認定の不正確さによるART数の過小評価 や、ARTの形成過程が不明なため経過時間とと もにART数が増加しているのか分からないこと が考えられる。そのことを確認するために、本 研究では鉱物表面に人工的にARTを形成する 手法の確立を目指した。 白雲母のARTのアニー リング挙動に関する実験も併せて行った.今回 はART検出器として白雲母を用いた。白雲母は 劈開面を観察することにより、ノイズや研磨の 影響を考慮する必要がなくエッチングにより顕 微鏡で容易にARTを観察することができる.

実験手法

照射実験

ARTを人工的に形成するためには、アルファ 壊変する重元素を鉱物表面に作用させる必要が ある.アルファ壊変によって原子核が鉱物方向 へ移動し,衝突することによりARTを形成す る可能性がある.本研究では京都大学複合原子 力科学研究所所有のある300 Bqの²⁴¹Am線源 を使用した.真空容器の中に白雲母と²⁴¹Am線 源の間に厚さ1 mmのガラススペーサーを置 き,様々な時間で照射を行った(1時間,3時 間,6時間,12時間,2日,4日,1週間).照射 後は全ての試料をフッ酸で2時間エッチング し,位相差顕微鏡を用いて観察を行った.観察 のルールとしてそれぞれの試料をランダムに5 箇所 (34100 μm² × 5)撮影し,解析ソフト (ImageJ)を用いて画像の二値化を行い,ART の個数と面積を測定した.

アニーリング実験

ARTの大きさは年代値を算出する際の重要な 要素の一つである.しかし,測定試料がどのよ うな環境(期間や温度)に置かれてきたかによ り大きさは変化するため,ARTのアニーリング 特性を理解することは重要である.照射実験の 手法で3時間照射した白雲母試料を複数個用意 し,異なる温度(100℃,150℃,200℃)と時 間(30分,1時間,3時間,5時間,10時間,20 時間,100時間,352時間)でアニーリングを 行った後,エッチング・観察を行った.

結果と考察

本研究では241Am線源を用いて新たなART形 成手法の確立に成功した. 照射時間の増加に伴 い白雲母表面に形成されたART面密度が直線 的に増加していることが確認できた(図1). 1時間から12時間の照射期間ではARTを1つず つ識別可能であったが、2日から1週間の照射 期間ではARTの重複により個数や面密度に影 響があった、この結果から、2時間エッチング による白雲母の測定年代上限は、ウラン濃度が 1~10 ppm程度である場合,数万から数十万年 前の試料であることが分かった. ARTの大き さはアニーリング温度と時間に依存し、2つの ステップ (急速なアニーリングとゆるやかなア ニーリング)に分けられることが示された (図2) ARTのサイズ分布を比較したところ, 人工的に形成したARTの方が天然のARTより も大きくなった。人工的なARTは²⁴¹Amから ²³⁷Npへの単一アルファ壊変により形成され る。一方で、天然のARTは²³⁸U、²³⁵U、²³²Th からそれぞれ安定な²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pbへと

複数壊変を起こすため後者の方が大きなトラッ クを形成すると考えられる。白雲母がカンブリ ア紀以前に産出したものであることを考慮する と (Richard and Forrest, 1950),等温アニー リング実験の結果から,天然のARTは周囲の環 境温度 (27℃ ~ 34℃) で長期間アニーリングさ れたものであると考えられる (図3,表1).

人工的なART形成手法の確立により, 雲母以 外の様々な鉱物におけるART特性を評価する ことが可能になった. 今後はジルコンへの適用 によりART年代測定法のさらなる発展が期待 される.

引用文献

- 早坂ほか (2018) 原子間力顕微鏡を用いたジル コンの α リコイルトラック年代測定. フィッション・トラック ニュースレター, 31, 20-22
- Richard H. J and Forrest W. L. (1950) Physical characteristics of commercial sheet muscovite in the southeastern United States, USGS, 225

図2. アニーリング時間とARTサイズの関係

図3. アニーリング実験のアレニウスプロット

Tem perature (°C)	Estim ated period (10° year)
25.0	79.9
26.0	59.6
27.0	44.4
28.0	33.2
29.0	24.9
30.0	18.7
31.0	14.1
32.0	10.6
33.0	8.0
34.0	6.1
35.0	4.6