Am線源、Cf線源を利用したアルファリコイルトラックの形成実験

中島大輝*・横山明彦*・山田記大*・長谷部徳子*・飯沼勇人**・高宮幸一**

Experiments on the formation of alpha recoil tracks using Am and Cf radiation sources

Taiki Nakashima*, Akihiko Yokoyama*, Norihiro Yamada*, Noriko Hasebe*, Yuto linuma** and Koichi Takamiya**

** 金沢大学, Kanazawa University

** 京都大学, Kyoto University

1. はじめに

アルファリコイルトラック (ART) は, ²³⁸U, ²³⁵U, ²³²Thおよびその娘核種がアルファ壊変 した際に残った原子核がその反動で動いたとき にできる損傷のことである. ウランとトリウム の壊変定数が既知の場合、鉱物内のART数と ウラン・トリウム濃度を測定することで鉱物の 年代を算出することができる。実際に金雲母や 黒雲母では算出された年代と既知年代はほぼ一 致していることが確認されている (Gogen and Wagner, 2000). 人工的にARTを形成すること ができれば適切なエッチング条件の検討, 鉱 物表面の性質、熱履歴調査のための加熱時の 特性など様々な研究に応用することができる が、この分野の研究はあまり進んでいない (Hashimoto et al., 1980; Glasmacher et al., 2003).

本研究では²⁴¹Amと²⁵²Cfのアルファ線源を用 いて人工的なARTの形成手法を確立することを 目的とした.手法の確立により, 雲母以外の 様々な鉱物におけるARTの形状や特性の理解 を深めることができ,地球年代学のさらなる発 展に貢献することができると考えられる.

2. 実験

人工的にARTを作成するためには、重元素を 100kev程度の低エネルギーで鉱物表面に照射 する必要がある.本研究ではアルファ壊変を行 う放射性元素を用い、アルファ壊変によって動 いた原子核が鉱物の方へ移動することによる ARTの形成を試みる。本研究では、²⁴¹Am線源 (300Bq) と²⁵²Cf線源(約100Bqと1kBq)の3種 類を使用した。252Cfの約100Bqの線源は, 1kBqの線源の蓋に252Cfが付着していたのでそ れを線源として利用したものである。照射実験 は京都大学複合原子力科学研究所で行った. 様々な照射時間で試料表面の状態変化を観察し た (表1). 今回は照射試料として白雲母を用い た。白雲母は劈開面を観察することにより、ノ イズや研磨の影響を考慮する必要がなく、エッ チングによりARTを大きくすることができるた め, 顕微鏡で容易にARTを観察することがで きる (Gogen and Wagner, 2000).

3. 結果と考察

3.1. 241Am線源の照射

各照射時間における試料表面の画像を図1に 示す. 画像を比較すると照射時間の増加に伴っ てART数が増加している. しかし,2日以降の 照射は形成されたARTが重複することにより 計数がうまくできなかった.そのため, ImageJを用いて画像を二値化しARTに対応す るピクセル数を比較した (図2).図2より照射 時間の増加と共にピクセル数も増加傾向である ことが分かる.傾きの減少はARTの重複によ るものであると考えられる.正確な計数結果を 得るためにはARTの重複が起こらない半日が 限界であるため,今後は照射時間を減らして観 察を行っていく必要がある.

3.2. 252Cf線源の照射

1kBqの線源で照射した結果を図3に,約 100Bqの線源で照射した結果を図4に示す.図3 より,試料表面にはARTとFTの両方が形成さ れていることが分かる.しかし,5~10分の短 時間照射でも形成されたART数が多く,照射 時間によるARTの増減を比較することができ なかった.1kBqより弱い線源である約100Bq の線源で照射した結果(図4),赤丸で囲った5 つの部分にFTが密集しており,均質な線源で はないことが確認できた.不均質な線源である 理由として,1kBqの²⁵²Cfが自発核分裂を起こ すことにより放射性元素がランダムな方向へ飛 ばされるためであると考えられる.以上のこと から,²⁵²Cf線源を用いる際は1kBqより弱く均 質な線源を用いることが望ましいと言える.し かし,²⁵²CfはARTだけでなくFTも形成するこ とを考慮すると自発核分裂を行わないアメリシ ウム線源を用いての照射が好ましい.

文献

- K. Goegn and G.A. Wagner, 2000, Alpharecoil track dating of Quaternary volcanics. Chemical Geology, 166, 127-137
- T. Hashimoto, H. Sugiyama and
 T. Sotobayashi, 1980, Alpha-recoil track formation on muscovite and measurement of recoil-range using ²⁵²Cf-sources. Nuclear Tracks, 4, 263-269
- U.A. Glasmacher, M. Lang, S. Klemme, B. Monie, L. Barbero, R. Neumann, and G.A. Wagner, 2003, Alpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force microscopy. Nuclear Instruments and Methods in Physics Research Section B, 209, 351-356

|--|

図1. 各照射時間における試料表面の観察結果. (a)半日照射:(b)2日照射:(c)4日照射:(d)1週間照射

図2.²⁴¹Am線源の照射時間とピクセル数.

図3.²⁵²Cf線源(1kBq)の照射結果. (a)5分照射:(b)10分照射

図4. ²⁵²Cf線源(100Bq)の照射結果. (a)100Bq照射後のFT密集エリア:(b)エリア3の拡大図